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Diagnosability of mtDNA with Random Forests: Using
sequence data to delimit subspecies

This is the fifth of six papers forming a special issue of Marine Mammal Science (Vol. 33, Special
Issue) on delimiting cetacean subspecies using primarily genetic data. An introduction to the special issue
and brief summaries of all papers it contains is presented in Taylor et al. (2017b). Together, these papers
lead to a proposed set of guidelines that identify informational needs and quantitative standards (Taylor
et al. 2017a) intended to promote consistency, objectivity, and transparency in the classification of
cetaceans. The guidelines are broadly applicable across data types. The quantitative standards are based
on the marker currently available across a sufficiently broad number of cetacean taxa: mitochondrial
DNA control region sequence data. They are intended as “living” standards that should be revised as
new types of data (particularly nuclear data) become available.
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Abstract

We examine the use of an ensemble method, Random Forests, to delimit sub-
species using mitochondrial DNA (mtDNA) sequences. Diagnosability, a measure
of the ability to correctly determine the taxon of a specimen of unknown origin, has
historically been used to delimit subspecies, but few studies have explored how to
estimate it from DNA sequences. Using simulated and empirical data sets, we
demonstrate that Random Forests produces classification models that perform well
for diagnosing subspecies and species. Populations with strong social structure and
relatively low abundances (e.g., killer whales, Orcinus orca) were found to be as diag-
nosable as species. Conversely, comparisons involving subspecies that are abundant
(e.g., spinner and spotted dolphins, Stenella longirostris and S. attenuata), are only as
diagnosable as many population comparisons. Estimates of diagnosability reported
in subspecies and species descriptions should include confidence intervals, which are
influenced by the sample sizes of the training data. We also stress the importance of
reporting the certainty with which individuals in the training data are classified in
order to communicate the strength of the classification model and diagnosability
estimate. Guidance as to ideal minimum diagnosability thresholds for subspecies
will improve with more comprehensive analyses; however, values in the range of
80%–90% are considered appropriate.

Key words: taxonomy, subspecies, mtDNA, random forests, machine learning, spe-
cies, population genetics, systematics, classification.

In the beginning of his book outlining the principles of systematics and taxonomy,
Ernst Mayr (1969) defines taxonomy as, “the theory and practice of classifying
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organisms.” This emphasis on classification at the root of one of the central fields of
biology reflects the way we naturally conceptualize the world around us. Our ten-
dency to group items based on shared features is a practice that facilitates information
retrieval, comparisons and contrasts, and provides a basis for future hypotheses (Cas-
tro and Toro 1995). Taxonomy is merely a formalization of this natural process of
making sense of our surroundings.
Species are the basic units of systematics and taxonomy, and there is a rich history

of ways to define, describe, and delimit them, which have been organized into formal
species concepts (Zink and Davis 1999, Lee 2003, Sites and Marshall 2004, de
Queiroz 2007). Diagnosability is at the heart of many of these concepts and is also,
practically speaking, often an operational necessity for species delimitation (Mayr
1969, Li et al. 2006, Brambilla et al. 2009). The Phylogenetic Species Concept
(PSC), which defines a species as “the smallest diagnosable cluster of individual
organisms within which there is a parental pattern of ancestry and descent” (Cracraft
1983) is one of the more commonly used species concepts, especially when using
genetic data for taxonomy. Under the PSC, there is an expectation that all members
of a species are fully diagnosable (Baum and Donoghue 1995, Wheeler 1999, Helbig
2002), meaning that in the suite of distinguishing characteristics used for the diag-
noses (e.g., morphological, genetic, etc.), there can be no overlap with other species. In
other words, assignments for species must be unambiguous and without error.2

The above requirement for complete diagnosability of species is in contrast to the
use of diagnosability with regard to subspecies, where it is also a central and defining
characteristic (Mayr 1942, Amadon 1949, Barrowclough 1982, Remsen 2010).3 Sub-
species reside immediately below species and are the smallest named taxonomic unit.
Taylor et al. (2017b) define a subspecies as a “population, or collection of populations,
that appears to be a separately evolving lineage with discontinuities resulting from geog-
raphy, ecological specialization, or other forces that restrict gene flow to the point that
the population or collection of populations is diagnosably distinct.” A part of this defi-
nition is intended to recognize that although gene flow has been restricted, it may still
be occurring at low levels, and as such, some degree of character overlap is expected
(Amadon 1949, Patten and Unitt 2002, Patten 2010). Unlike species, subspecies can
be partially diagnosable. Thus, important questions for subspecies delimitation are
what level of diagnosability is sufficient, and how it is best measured (Patten 2010).
The primary quantitative guidance for diagnosability of subspecies has been the

“75% rule” (Amadon 1949, Patten and Unitt 2002). The rule as described by Ama-
don (1949), requires that for two putative subspecies to be considered diagnosable, at
least 75% of the distribution of a given character for each must lie outside of at least
99% of the distribution of the other (Fig. 1A). Amadon (1949) also demonstrated
that if the character being used for the diagnosis could be described by a Normal dis-
tribution, this is equivalent to requiring that 97% of one distribution lies outside of
97% of the other. The point where the two distributions overlap identifies a thresh-
old value for the character, or the point at which an individual would have an equal
chance of belonging to either subspecies (Fig. 1B). It should be kept in mind that

2Diagnostic characters for species need not apply to all members of a species at any life stage. Most spe-
cies concepts recognize that diagnostic characters may be different for different ages, stages, or sexes, or
nonexistent altogether in some classes (Helbig et al. 2002).

3Strict adherents to the Phylogenetic Species Concept do not recognize the taxonomic rank of sub-
species, because taxa are either fully diagnosable, and thus elevated to species, or not diagnosable and have
no status (McKitrick and Zink 1988, Cracraft 1992).
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both formulations are different ways of describing the minimum acceptable overlap
between the two distributions.
Diagnosability in general, and the 75% rule in particular, has been interpreted in

multiple ways by various authors (Wilson and Brown 1953, Patten and Unitt 2002,
Remsen 2010). Most of these interpretations can be categorized in one of two ways.
The first is an evaluation of the degree of overlap in the distributions of the putative
subspecies for a particular character. Representing the second form of interpretation,
Remsen (2010) argues that diagnosability should have the individual, rather than the
population, as its unit of analysis. Under this paradigm, focus is placed on estimating
how distinct individuals are rather than the degree of differentiation among groups
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Figure 1. (A) Distribution of a hypothetical character for two putative subspecies (red and
blue) demonstrating minimum overlap necessary to satisfy 75% rule of Amadon (1949). Char-
acter is continuous on the x-axis. Dashed lines indicate the point at which 75% of each distri-
bution is outside of 99%+ of the other. Solid line indicates point of overlap where 97% of
both distributions are outside one another. (B) Probability of membership to subspecies for
specimens having values along the character axis. Probability is based on the ratio of the distri-
bution frequencies at each point along the x-axis, with a 50:50 probability occurring at the
threshold point.
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of individuals. In this usage, diagnosability is satisfied if some minimum percentage
of the individuals can be correctly classified. We believe that this conceptualization
best fits the standard usage of diagnosability and the systematic goals for delimiting
subspecies as being more discrete than populations (see Taylor et al. (2017b) and Mar-
tien et al. (2017) for further discussion). We thus propose a general definition of diag-
nosability as “a measure of the ability to correctly determine the taxon of a specimen
of unknown origin based on a set of distinguishing characteristics.”
We note that there are two related, but different terms—“diagnosability” and “di-

agnosable.” The first, diagnosability, is the measure that results from an analytical
method on a particular data set. For example, with a given data set, one algorithm
might estimate that 75% of unknown individuals are diagnosable. That is, one is able
to correctly classify 75% of the individuals presented to the model to their original
stratum. On the other hand, another algorithm applied to the same data might esti-
mate that 98% are diagnosable. The difference between the two diagnosability esti-
mates comes from the power of each analytical method to correctly classify
individuals. In contrast, to say that a given subspecies is “diagnosable” is to state that
given a particular algorithm and data set, the estimated degree of diagnosability
exceeds a threshold value above which one is comfortable assigning subspecies status.
So, if a threshold of diagnosability were set at 97%, then in the previous example, the
first analysis, where diagnosability was 75%, would not make for a sufficiently diag-
nosable subspecies, while the latter analysis on the same data (diagnosability = 98%)
would meet the threshold.
As in any study, sample size is also a critical factor that should be carefully consid-

ered when evaluating diagnosability (Taylor et al. 2017a). For the purposes of creat-
ing a classification algorithm, small sample sizes are often not able to adequately
characterize the diversity in the strata under comparison. More importantly, small
sample sizes also directly affect the uncertainty of diagnosability estimates, a topic
that is rarely, if ever, discussed in the literature. It should be kept in mind that classi-
fication probabilities are only estimates and as such have some amount of variability.
As sample size increases, these estimates are expected to become more accurate and
precise. In light of the fact that thresholds for delimiting subspecies based on diag-
nosability are arbitrary by nature (Amadon 1949, Wilson and Brown 1953, Johnson
et al. 1999, Patten and Unitt 2002, Remsen 2010), the effect of sample size on the
uncertainty around these diagnosability estimates must be taken into account as well.
Traditionally, morphometric characters formed the basis for most taxonomic

descriptions. However, in many fields, genetic markers are increasingly being used to
augment morphological data, or even as the sole source of data for taxonomic studies
(Cronin 1993, Bradley and Baker 2001, Rosel et al. 2017b). Due to its nonrecombin-
ing nature, combination of hypervariable and conserved sites, and high copy number,
mitochondrial DNA (mtDNA) has become the marker of choice for many studies
(Zink and Barrowclough 2008, Rosel et al. 2017b, Martien et al. 2017). There are a
host of assignment, clustering, and tree-building methods for genetic data. However,
few are explicitly designed to assess diagnosability (see Patten 2010 and Martien
et al. 2017 for reviews). As one example, phylogenetic trees are frequently used to
assess diagnosability of species (Brambilla et al. 2009). However, using phylogenetic
trees for diagnosing subspecies is fundamentally flawed, as trees can only assess mono-
phyly, or the absence thereof, of the haplotypes under examination, and subspecies
are not expected to be monophyletic (Patten 2010). It is a well-known limitation that
for recently diverged taxa, lineage sorting will be delayed in neutral sites like
mtDNA, such that the gene tree will lag behind the species tree (Eckert and Carstens
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2008, Remsen 2010). In addition, because low levels of gene flow are expected
between subspecies, migration between areas with fairly diverged haplotypes can
result in polyphyletic patterns with no shared haplotypes (Archer et al. 2013). More
importantly, few of these methods allow for the diagnosis of individuals possessing
novel sequences. Although mtDNA haplotypes can be assigned to strata based on
their frequencies, one cannot assign new haplotypes that have not been seen before.
To bridge this gap, a method is needed that uses genetic sequence data to produce

a classification algorithm that can predict the subspecies or species to which unknown
specimens belong. One such method, Random Forests (Breiman 2001), is specifically
designed to build unbiased classification models and overcomes many of the short-
comings described above. Random Forests has been increasing in popularity as a tech-
nique to uncover patterns in large, complex data sets (Cutler et al. 2007, Winham
et al. 2012, Touw et al. 2012). In a review of ensemble methods, Berk (2006)
demonstrated that Random Forests outperformed and was more robust than methods
such as Classification and Regression Trees (CART), bagging, and boosting (all of
which can be considered to be special cases of Random Forests). Random Forests has
several characteristics that make it an ideal tool for quantifying diagnosability:

• Creates an algorithm to classify individuals of unknown origin.
• Is internally validated and produces strata-specific estimates of classification

error.
• Produces individual-specific estimates of classification uncertainty.
• Identifies diagnostic characters.
• Is nonparametric.
• Uses all types of data (continuous/discrete, ordered/unordered).
• Allows weighting of classification probabilities based on prior knowledge.
• Permits tuning to balance classification errors.

In our proposed implementation of Random Forests, the raw data comprise a set of
individuals represented by aligned mtDNA sequences, each grouped into their a pri-
ori defined taxa (e.g., putative subspecies). All individuals in the data set are used,
rather than reducing the sequences to unique haplotypes, so that the frequencies of
haplotypes, and hence, that of their constituent nucleotide substitutions are properly
represented. Additionally, sequences can be reduced to just variable sites so the analy-
sis does not waste time evaluating conserved sites that have no classification informa-
tion. Because Random Forests operates on the level of the individual nucleotides
rather than haplotypes, substitutions that have arisen within strata (synapomorphies)
provide the strongest signal for the algorithm. This difference in the way Random
Forests treats sequences means that unique and rare haplotypes can contribute useful
information to the classification algorithm in a way in which they cannot in standard
frequency-based population genetics methods (Martien et al. 2017).
In this study, we examine the use of Random Forests for the taxonomic diagnosis

of mtDNA sequences. Given that genetic differentiation among diverging strata is
influenced by multiple factors such as population size, divergence time, and migra-
tion and mutation rates, we generated a series of simulated data sets to model how
these factors affect the development of diagnostic sites. These models provide a con-
text and insight towards evaluating the performance of Random Forests on real-world
data sets. We then examine the diagnosability of just such an empirical set of
mtDNA sequences from recognized populations, subspecies, and species of cetaceans
culled from an extensive survey of literature and unpublished studies (Rosel et al.

ARCHER ET AL.: DIAGNOSABILITY OF mtDNAWITH RANDOM FORESTS 105



2017a). This data set was collected as part of a larger project aimed at bringing more
rigor and guidance to the field of cetacean taxonomy, especially in the delimitation of
subspecies, which are likely sorely under described (Taylor et al. 2017a). Finally, we
discuss the benefits and limitations of using Random Forests on sequence data to
quantify diagnosability for taxonomy, and propose some guidelines for its use.

Materials and Methods

Simulated Data

We simulated mtDNA D-loop data sets generated to represent a range of potential
cetacean populations, subspecies, and species using the coalescent-based program fast-
simcoal (Excoffier and Foll 2011). Each coalescent model was based on a single popula-
tion that split into two (both with effective population size Ne), T generations in the
past. After divergence, individuals in each population had a probability m of migrat-
ing to the other population each generation. Each simulated individual possessed a
450 base pair (bp) sequence with a mutation rate of l substitutions/bp/generation.
For each simulated data set, we sampled n individuals per stratum.
Preliminary analyses indicated that diagnosability was strongly influenced by the

absolute number of migrants (Nem) and the population mutation rate parameter, h =
4Nel (Watterson 1975). Therefore, we stratified parameter sampling and modeling
in two ways to ensure a uniform distribution of random draws across the parameter
space. Additionally, these preliminary analyses indicated that the effect of all parame-
ters except sample size was multiplicative, thus most parameters were sampled from
a Uniform distribution in log10 space. For the first model (M1), we first drew
300,000 parameter samples from the following distributions:

Migration rate (m) ~ 10Uniform(–10, 0)

Mutation rate (l) ~ 10Uniform(–9, –5)

Effective population size (Ne) ~ 10Uniform(1.699, 5.699)

Sample size (n) ~ Gamma (shape = 0.84, rate = 0.0045)
Divergence time (T) ~ 10Uniform(1, 6)

For the second model (M2), we drew another 300,000 parameter samples from the
following distributions, and calculated m and l:

Number of migrants (Nem) ~ 10Uniform(–5, 5)

Theta (h) ~ 10Uniform(–7, 1)

Effective population size (Ne) ~ 10Uniform(1.699, 5.699)

Migration rate (m) = Nem/Ne

Mutation rate (l) = h/4Ne

Sample size (n) ~ Gamma (shape = 0.84, rate = 0.0045)
Divergence time (T) ~ 10Uniform(1, 6)

Effective population size (Ne) was sampled to range between 50 and 500,000, cov-
ering potential values of cetacean species. The shape and rate parameters of the
Gamma distribution for n are derived from a fit to the distribution of individual sizes
from the empirical cetacean data described below (mean = 186, median = 80, mini-
mum = 8, maximum = 1,424; Rosel et al. 2017a). The range of mutation rates for
M1 was selected to represent those found in the mtDNA control region (Hoelzel
et al. 1991, Hayano et al. 2004, Jackson et al. 2009). In M2, because migration rate
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was a calculated value, we censored parameter draws to ensure that m < 1. In both
models, because Ne and n were sampled independently, we also censored parameter
draws to only those where n < Ne, and 30 ≤ n ≤ 300, making the range of sample sizes
comparable to those in the empirical data and similar to what would be encountered
in a real study.
For the final simulation data sets, we subdivided these censored parameters to cre-

ate sets of biologically meaningful categories and ensure an equal number of draws in
each. To represent populations in the process of becoming species, we selected 3,000
random parameter draws each from M1 and M2 for which we set m equal to zero.
From the remaining M1 parameters, we chose another 3,000 random draws to cap-
ture the effect of the range of migration rates sampled. Given that in ideal popula-
tions, approximately one migrant per generation is sufficient to prevent
differentiation due to genetic drift (Mills and Allendorf 1996, Wang 2004), we drew
3,000 random parameters from M2 (not previously selected for M2m = 0) where Nem
< 1 to represent diverging populations, and another 3,000 random parameters where
Nem ≥ 1, representing populations with homogenizing levels of dispersal.
For the purposes of this study, between-individual variability was more important

than within-individual variability due to stochasticity in the coalescent, so only one
fastsimcoal simulation replicate was run for each of the final 3,000 parameter draws
from M1 and 9,000 parameter draws from M2.

Modeling Effect of Simulation Parameters on Classification Accuracy

We modeled the relationship between overall classification accuracy and the simu-
lation parameters with a series of logistic Generalized Additive Models (GAM; Wood
2006). The models were constructed to predict the percent of all individuals correctly
classified. Overall accuracy was chosen as the response measure because both strata
had equal individual sizes, which make it a stable measure of classification ability
across all simulations. Because the parameters were measured on different units, all
models used a tensor-plate spline function (te) with a maximum basis of four. Prelim-
inary analyses indicated that the effects were multiplicative, thus log10-transforms of
all parameters were used as predictors in the models. For each subset of parameter
draws from the M1 and M2 parameter sets, we fit the following models:

M1m ¼ 0 : pðkjnÞ� te½log10ðNeÞ� þ te½log10ðlÞ� þ te½log10ðTÞ�
M1m[ 0 : pðkjnÞ� te½log10ðNeÞ� þ te½log10ðlÞ� þ te½log10ðmÞ� þ te½log10ðTÞ�
M2m ¼ 0 : pðkjnÞ� te½log10ðhÞ� þ te½log10ðTÞ�
M2m[ 0 : pðkjnÞ� te½log10ðhÞ� þ te½log10ðNemÞ� þ te½log10ðTÞ�;

where Ne is effective population size, l is the mutation rate, T is the divergence time
in generations, m is the migration rate, and h = 4Nel. For M2m > 0, three models were
fit: one for all data where m > 0, a second for the Nem < 1 subset, and the third for the
Nem ≥ 1 subset.

Stratification Errors

Misstratification is incorrectly placing an individual within a stratum, which could
happen when animals stray into atypical geographic regions or mix with other
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groupings during certain seasons. This error could be particularly problematic for
genetic data primarily obtained from biopsy samples where other independent lines
of evidence, like morphology, are not possible to obtain. In order to examine the
effect of errors in individual stratification, we conducted a sensitivity test with the
simulated data. In the test, for each of the 9,000 M2 data sets in which more than
one haplotype was present, individuals were assigned to the incorrect stratum based
on misstratification probabilities of 0.001, 0.005, 0.01, 0.05, and 0.1. We then ran
the same Random Forests analysis on these misstratified data sets as described below
and recorded the decrease in diagnosability resulting from a given level of misstratifi-
cation error.

Empirical Data

We also analyzed a set of mitochondrial control region sequences (280–961 bp)
compiled from literature and unpublished data as described in Rosel et al. (2017a)
(Table 1). These empirical comparisons were selected based on the following factors:
(1) a consensus as to their taxonomic level (population, subspecies, or species); (2)
ensuring that as many subspecies were represented as possible; and (3) ensuring the
presence of cases that would represent difficult to assess comparisons due to issues like
large variability due to large population sizes, or low variability due to highly struc-
tured social systems. The a priori assignment of individuals to strata was taken from
the original authors’ designations for published data sets or based on geography or
morphological features for unpublished data sets. Further rationale and details of com-
parisons chosen are given in Rosel et al. (2017a) and Supporting Information therein.

Random Forests

Random Forests is an ensemble-based classification algorithm that extends the
more familiar method of CART by adding several layers of stochasticity to the tree
growing process. This permits the algorithm to fully explore the predictive capability
of all variables, as well as producing an internally validated classifier. The process of
building a Random Forests model is illustrated in Figure 2. For each tree in the for-
est, the first step is to select a random set of sequences that are used as the training set
for the tree. Those sequences not selected (the out-of-bag or OOB sequences) are set
aside for cross-validation of the tree’s prediction accuracy. The tree is then grown in
the following iterative manner:

(1) Choose a random subset of nucleotide sites from all available sites.
(2) For each site chosen, create a splitting rule that divides the sequences into two

groups with the greatest purity of the a priori designated groups (lowest Gini
index).

(3) Choose the site that produces the best split and create two daughter nodes of
sequences based on that split.

(4) For each of these daughter nodes, return to step 1 and repeat until all nodes con-
tain a single sequence.

The OOB sequences are then sent through the decision tree based on its splitting
rules and classified to the stratum of the individual in the final node they end up in.
In this manner, a tree produces a single “vote” to a given stratum for each OOB
sequence. Steps 1 through 4 are repeated multiple times to produce many trees (the
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“forest”), each of which votes for the strata of their own respective OOB sequences.
The probability (P) that an individual is classified to a given stratum is the fraction of
trees voting for that stratum in the subset of trees in the forest where the individual
was OOB. Thus, a sequence is predicted to belong to the stratum with the largest P.
In the simple case of two strata, this would be the stratum for which P > 0.5.
We ran Random Forests on all data using the randomForest package (Liaw and

Wiener 2002) in R v3.0.2 (R Core Team 2015). For each comparison, only variable
sites were used as predictors in the Random Forests analysis. Sites that were variable
as a result of a substitution in a single individual were also excluded because they do
not add useful information for validation of the classification model with the OOB
individuals. Insertion/deletions (indels) were treated as unique substitutions equiva-
lent to other nucleotides. For all simulated and empirical comparisons 10,000 trees
were built for each forest, which were found to produce stable classification models
for all empirical comparisons. The number of individuals chosen to build each tree
was set to that of half of the smallest stratum, and sampling was done without
replacement, ensuring that OOB individuals would be available from each strata for
cross-validation. All other randomForest parameters were left to their defaults, and
individual models were not optimized in order to produce comparable, unbiased
results.
Because all Random Forests analyses were made between two strata, individuals

were assigned to the stratum for which more than 50% of the trees voted for them
when they were OOB. In this paper, we refer to the total fraction of individuals cor-
rectly classified in this manner as the percent diagnosable-50 (PD50), which is equal

Figure 2. Illustration of steps in constructing a Random Forests ensemble of classification
trees.
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to 1 minus the strata-specific OOB error rate output by randomForest. In order to char-
acterize the distribution of individual classification probabilities (fraction of trees vot-
ing for each individual), we also report PD95, which is the fraction of individuals in a
stratum with classification probabilities >95% to that stratum. As described above,
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prediction of percent correctly classified.
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because PD50 and PD95 are stratum-specific, we use the smallest PD50 and its associ-
ated PD95 as the overall measures of diagnosability and individual classification cer-
tainty for a comparison. Thus the estimate of diagnosability for a comparison is a
conservative one. Uncertainty of the PD50 diagnosability estimate was determined
using a standard binomial distribution, from which we present the central 95% cred-
ibility interval (CI).
We also present two other measures to help place the performance of the Random

Forests models into a comparable context with one another. The first is the degree of
diagnosability one would expect by random assignment of individuals, or the “prior”
model accuracy for the least diagnosable stratum (PDprior). This is simply the propor-
tion of all individuals in a comparison represented by that stratum. For example, if a
stratum contains 25% of the samples in a comparison, one would expect that by ran-
dom chance alone, one would be able to classify 25% of the samples from that stra-
tum correctly. For a model with two strata and equal sample sizes, PDprior would
simply be 50%.
The second measure is the maximum diagnosability the model could achieve

(PDmax), based on classifying individuals using only the frequencies of their haplo-
types in each stratum. Individuals with unique haplotypes are not considered. In cases
where a haplotype is shared among strata, Random Forests will classify all individuals
with that haplotype to the stratum in which it is at the highest frequency, putting an
upper limit on the maximum diagnosability achievable. Thus, while it is possible for
diagnosability as measured by PD50 to be less than PDprior (a sign of very low classifi-
cation ability and poor model performance), it cannot be greater than PDmax.
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Figure 4. GAM fit of number of migrants (Nem) from Model 2 parameters. Solid line shows
median value of predicted percent correctly classified, and shaded area shows 95% CI. The
switch from bimodal distribution to a normal distribution occurs at Nem = 1 (log10Nem = 0).
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Results

Simulated Data

The effects of the simulation parameters on predictions of overall classification accu-
racy from Random Forests models are well illustrated by the GAMmodel fits (Fig. 3–
5). Given that the simulations were coalescent-based, the general relationships are
easily interpreted from basic population genetics theory. Below, we highlight those
parts of the parameter space leading to the development of diagnostic sites as evinced
by particularly large estimated classification accuracy from the models.
As expected, classification accuracy was generally lower in the M1 data set with

migration than in the one without. All individuals were correctly classified in 1,293 of
the 3,000 simulations (43%) where m = 0 as compared with 621 of the 3,000
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simulations (21%) where m > 0. In the GAM fits to the M1m = 0 data, divergence time
(T) was the strongest predictor of overall accuracy (Fig. 3a, b), reaching perfect classifi-
cation at approximately 105–106 generations across all values of effective population
size (Ne) and most values of mutation rate (l). Predicted classification rates decreased
with decreasing mutation rate, but were more strongly affected by divergence time
(Fig. 3b). For example, classification rates greater than approximately 70% are not pre-
dicted for mutation rates <10–7 unless divergence time is greater than approximately
1,000 generations. Finally, although classification rates tended to be higher with smal-
ler effective population size, this effect was primarily evident for short divergence times
(Fig. 3a), indicating that effective population size was not a strong predictor across
much of the parameter space. With migration present in the M1m > 0 data (Fig. 3d–f),
the patterns were similar to those seen in the M1m = 0 fits; large correct classification
rates (>90%) were only predicted with long divergence times (>105 generations), small
effective population sizes (<1,000 individuals), and high mutation rates (>10–6/bp/gen-
eration). Divergence time was still a very strong predictor, but overall accuracy was
affected more prominently by effective population size (Fig. 3d, f).
The M2 parameter sets were selected to explore the effect of the effective popula-

tion size-normalized parameters Nem and h. Similar to the case with the M1 parame-
ters, 1,037 of the 3,000 M2m = 0 simulations (35%) had perfect classification. There
is a stark difference between the M2m > 0 set of parameters where Nem < 1 and Nem ≥
1 (Fig. 4). In the 3,000 simulations where Nem < 1, 803 had perfect classification of
all individuals (27%) while only 2/3,000 (0.06%) where Nem ≥ 1 showed perfect clas-
sification. Simulations in the Nem < 1 data set formed two modes, one with large
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classification accuracy (>80%), and another centered between 45% and 55%. The lat-
ter mode was primarily composed of simulations in which only one haplotype was
present among all individuals in both strata. Simulations from the Nem ≥ 1 data set
converged on a classification accuracy of 50%.
In the M2m=0 model, where the only parameters were h and divergence time (T),

overall accuracy increases with increasing T, predicted to exceed 0.9 when divergence
time is greater than approximately 105 generations (Fig. 5a). However, this level of
accuracy can also be reached at divergence times closer to 104 generations when h is less
than approximately 10–3. When migration is present, but Nem < 1, there is a stronger
effect of h in relation to generation time when h > 10–3 implying that when mutation
is reduced past this level, migration will be a stronger homogenizing force, even at
long divergence times (Fig. 5b). For values of Nem less than approximately 0.1, there is
little difference in estimated classification accuracy across values of divergence time and
mutation rate (Fig. 5c, d). In contrast, when Nem ≥ 1, there is little effect of divergence
time on classification accuracy (Fig. 5e, f). In this model, the highest estimated accura-
cies were between 70% and 85%, and were only predicted for h greater than approxi-
mately 0.1 and Nem less than approximately 10 individuals per generation (Fig. 5f, g).

Stratification Errors

The misstratification sensitivity test revealed that increasing the probability that
individuals were misstratified tended to cause a decrease in diagnosability, as
expected. This tendency was more strongly seen when the original diagnosability was
>50%, (Fig. 6). However, even at the largest stratification error rate examined (P =
0.1), the central 95th percentile of the distribution of the change in diagnosability
still spanned zero (Table 2). If this distribution is further censored to data sets with
diagnosability >60%, the median for this error rate becomes –10.9, and the central
95th percentile increases to –0.19–18.51. With a misstratification rate of P = 0.01,
the median change in diagnosability is only –0.61 and –1.12 for the diagnosability
≤50% and >50% data sets, respectively.

Empirical Data

A summary of the Random Forests analyses for the empirical comparisons is given
in Figure 7, which shows the range of diagnosability estimates (smallest PD50), their
associated 95% confidence intervals, the PD95 for the same strata as a measure of indi-
vidual classification certainty, and the range of PDprior to PDmax as a measure of the
model performance. For example, in one of the two Physeter macrocephalus population

Table 2. Summary of stratification error sensitivity test on M2 simulated data where diag-
nosability >50%.

Pr(misstratification) n

Change in diagnosability

Median Central 95% Percent > 0

0.001 3,537 0 –3.04–3.33 0.27
0.005 3,520 –0.46 –3.95–3.62 0.57
0.01 3,527 –1.12 –5.41–4.11 0.72
0.05 3,485 –5.2 –11.66–6.65 0.89
0.1 3,388 –10.24 –18.32–8.12 0.91
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comparisons (Pmac.2: North Atlantic vs. North Pacific), the estimated diagnosability
is 72% (95% CI = 66%–77%). This is better than the prior of 60% for this particu-
lar stratum, but based on the distribution of haplotypes shared between the two strata
in this comparison, 72% is the best diagnosability obtainable with these data. Thus,
for this comparison, there is evidence of some diagnostic signal in the mtDNA
sequences, but diagnosability is limited.
The other Physeter macrocephalus population comparison (Pmac.1: California Cur-

rent vs. eastern tropical Pacific) provides a contrasting example. In this comparison, if
there were diagnostic sites, the best possible diagnosability would be 33%. However,
the actual diagnosability is 27% (95% CI = 15%–41%), which is even less than the
31% that would be expected by random chance. This poor performance is likely
related to an imbalance in the sample sizes, in which the smaller population (Califor-
nia Current, n = 52) performed much worse than the larger (eastern tropical Pacific, n
= 114). This poor performance is also reflected in the individual classification uncer-
tainty for the California Current strata, in which none of the individuals were classi-
fied with greater than 95% probability (PD95 = 0).
As expected, all comparisons with fixed differences among strata (21/22 species, 3/

11 subspecies, and 2/20 populations) had all individuals correctly classified. The only
species comparison without fixed differences (Neophocaena phocoenoides vs. N. asiaorien-
talis) had PD50 values of 100% (N. phocoenoides) and 80% (N. asiaorientalis). The 95%
CI for the Neophocoena diagnosability estimate was also the widest of all comparisons
at 44%–97%. For all species comparisons except Neophocoeana, PD95 values were
>90%, indicating large confidence in individual assignments.
Three subspecies comparisons (Balaenoptera physalus [Bphy.2], Commersoni hectori

[Chec], and Lagenorhynchus obscurus [Lobs.3]) had fixed differences and diagnosabilities
of 100%. The Phocoena phocoena subspecies comparison (Ppho.3) also had a diagnosabil-
ity of 100%, even in the absence of fixed differences. The remaining seven subspecies
comparisons had diagnosabilities ranging from 50% to 99%. The two worst perform-
ing subspecies comparisons were for Stenella longirostris (Slon.2), and S. attenuata
(Satt.4) with diagnosabilities less than 60%. Eight of the eleven subspecies compar-
isons had diagnosabilities equal to PDmax, demonstrating very good model perfor-
mance in these cases. Two of the four subspecies comparisons with diagnosability less
than PDmax (Lobs.1 and Ttru.4) had 95% CIs very close to or exceeding PDmax.
The two population comparisons with fixed differences were both killer whale com-

parisons in which each population is characterized by a single haplotype. The two other
population comparisons with diagnosabilities >85% were Pseudorca crassidens (Pcra), and
one of the Tursiops truncatus comparisons (Ttru.3). The remainder of the population com-
parisons had diagnosabilities <81%. In only six of the 20 population comparisons were
diagnosabilities seen that were lower than the PDprior values indicating that there was
little diagnostic information in the sequences in these comparisons. Additionally, most
individuals in many population comparisons (13/20) were not classified to their popula-
tion of origin with great certainty as evidenced by the PD95 values <0.5.

Discussion

Factors Affecting Diagnosability

The development of diagnostic sites in the continuum from populations to full
species is the result of the interplay of multiple factors. The most obvious factor
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Figure 7. Summary of Random Forests classifications for each empirical comparison. Each
row shows results from the stratum with the smallest fraction of individuals correctly classi-
fied, with comparisons labeled by their taxonomic codes as listed in Table 2. Colors identify
comparison type as species (blue), subspecies (green), and populations (red). Points show the
fraction of individuals correctly classified with probabilities > 50% (PD50, circles), and > 95%
(PD95, triangles). Thin colored lines show 95% confidence intervals (CI) around PD50 esti-
mates. Gray bars show range of a priori random classification rates based on individual size
(left) to maximum possible classification rates based on shared haplotypes (right).
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promoting speciation is a decrease in dispersal among diverging populations, which
allows for the independent accrual of mutations and fixation of haplotypes resulting
from genetic drift. Our simulation results strongly support previous findings that dif-
ferentiation occurs when dispersal is less than approximately one migrant per genera-
tion (Mills and Allendorf 1996, Wang 2004). Less than this threshold, there is still a
small part of the parameter space (low h and low divergence time) where classification
can be low. However, outside of this part of the parameter space, classification accu-
racy tended to be greater than approximately 80%, indicating that dispersal was low
enough that diagnostic sites could develop independently.
The simulations also highlighted how strongly divergence time affects classifica-

tion accuracy. On average, it took a minimum of approximately 104 generations for
genetic drift to produce high (>0.9) classification accuracy between two diverging
species. Given cetacean generation lengths of approximately 20 yr (Taylor et al.
2007), our models suggest that perfect diagnosability between species would take on
the order of two million years to develop. This estimate is consistent with published
estimates of divergence times for many closely related cetacean species (Caballero
et al. 2007, McGowen et al. 2009, Vilstrup et al. 2011).
It is well known that haplotypes drift to fixation more rapidly in populations with

relatively small Ne (Frankham 1996, Charlesworth 2009), which should lead to
higher classification accuracy. Although this effect was seen in the simulated data,
the relationship with Ne is not as strong as that of other factors. It is most evident at
short divergence times and low mutation rates, where diversity and differentiation
would be expected to be low on average, and therefore amplified by these increased
rates of genetic drift. The effective population size of a given stratum will reflect its
life history characteristics and depend on the taxonomic level under examination.
Coastal species with limited geographic ranges will tend to have smaller Ne than pela-
gic species with transoceanic distributions. Likewise, Ne of a subspecies will always
be larger than that of the populations that comprise it, as will the effective population
size of a species relative to its subspecies.
Finally, mutation rate was also seen to be an important predictor of classification

accuracy. Across the range of mutation rates we examined (10–9–10–5/bp/generation),
the lowest values were insufficient for producing any variability except when diver-
gence times were relatively long. Mutation rate estimates from pedigree studies in
humans for the mtDNA control region are on the order of 10–5–10–6/bp/generation
(Sigurðard�ottir et al. 2000, Heyer et al. 2001). Rates for cetaceans based on fossil cal-
ibrations are on the order of 10–7–10–8, with baleen whales tending to have slower
mutation rates than toothed whales (Hoelzel et al. 1991, Harlin et al. 2003, Hayano
et al. 2004, Jackson et al. 2009). Thus, while the development of diagnostic sites will
likely be slower for loci with more conserved regions, it is also likely to occur at a
lower rate in some taxa as compared to others.

Empirical Performance of Random Forest

Full diagnosability of species was observed in our empirical data set of cetacean
mtDNA control region sequences in all of the species comparisons but one (Neopho-
caena phocaenoides vs. N. asiaorientalis). The description of N. asiorientalis as a new spe-
cies is recent (Wang et al. 2010, Jefferson and Wang 2011) and was based primarily
on diagnostic morphological characters. The lack of fixed differences in the control
region sequence for this species pair is explained by the very recent estimate of diver-
gence time (18,000 yr), leading to incomplete lineage sorting (Jefferson and Wang

120 MARINE MAMMAL SCIENCE, VOL. 33, SPECIAL ISSUE, 2017



2011). As mentioned earlier, the choices of which species pairs to include in Rosel
et al. (2017a) was not random but specifically focused on cases likely to be problem-
atic for developing quantitative standards for genetic taxonomic delimitation. The
Neophocaena data set was chosen to aide in this process knowing that the shared haplo-
types would not allow full diagnosability with this marker.
When used for subspecies delimitation, diagnosability does not mean perfect clas-

sification, but rather something close to it (Patten and Unitt 2002, Remsen 2010),
making the boundary between subspecies and populations subjective (Wilson and
Brown 1953, Martien et al. 2017, Taylor et al. 2017b). In our analysis, although sub-
species tended to be more diagnosable than populations, there were no absolute
boundaries between the two types of comparisons. Subspecies tended to have a larger
proportion of individuals correctly classified with high certainty, while many popula-
tion comparisons performed worse than would be expected by random chance (PD50

� PDprior). While a special algorithm like Random Forests is not necessary with
fixed differences, these patterns in the absence of fixed differences are evidence that
Random Forests is making use of diagnostic information from a combination of sites
that has arisen during population divergence. Lack of concordance among multiple
sites is not a confounding issue for Random Forests as it is with standard morphologi-
cal methods (Remsen 2010).
In interpreting these results from the empirical data analysis, we re-emphasize that

the set of comparisons we used should not be construed as a random selection of all
possible comparisons at each taxonomic level. As described in Rosel et al. (2017a),
these comparisons were selected to be (1) as comprehensive as possible of the available
data for subspecies level comparisons; (2) representative of “difficult” cases (i.e., com-
parisons that were expected to be near the population/subspecies or subspecies/species
boundaries; and (3) comparisons for which there was relative consensus as to their tax-
onomic level. The desire for consensus necessarily limited the number of possible
comparisons because the objective of the series of papers in this volume is to move
towards reducing the number of likely errors in cetacean taxonomy.
For example, multiple ecotypes of killer whales are found in every ocean basin in

which they have been studied (Hoelzel et al. 2007, Morin et al. 2010, Foote et al.
2011). Because there is ongoing debate about whether these ecotypes are populations,
subspecies, or species, we did not conduct comparisons between ecotypes. Instead, we
elected to compare neighboring populations within the ecotype known as “North
Pacific resident killer whales.” These comparisons were deliberately chosen to exam-
ine potential errors using mtDNA for species with exceptionally low effective popula-
tion size. These populations also have very low diversity, wherein each is fixed for one
of three haplotypes, causing each to be fully diagnosable. Similar to killer whales,
Hawaii insular and Pacific pelagic populations of false killer whales (Pseudorca crassi-
dens) have strong social structures and relatively low effective population sizes (Mar-
tien et al. 2014). Although there were no fixed differences or shared haplotypes
between these two strata, they were also highly diagnosable in the Random Forests
analysis (PD50 = 98%, PD95 = 88%), making them more similar to other subspecies
comparisons than to the other population comparisons. However, as of this writing,
there has not been a formal examination of the taxonomic status of false killer whales.
In contrast to the Orcinus and Pseudorca comparisons (which were chosen to reveal

potential classification issues with very low Ne), those comparisons with low diagnos-
ability tended to be pelagic delphinid populations and subspecies (which were chosen
in part to reveal potential classification issues with high Ne). As seen in the simula-
tion models, the increase in diversity and related decrease in the rate of genetic drift
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for populations with large Ne leads to low diagnosability with a marker like the con-
trol region. This is especially true in recently diverged taxa and when sampling is
low relative to population size, as is likely the case for the Stenella longirostris and S.
attenuata population and subspecies comparisons. For these strata, sample sizes were
between 20 and 40 individuals, while population sizes as recently as the 1960s are on
the order of several millions (Wade et al. 2007).
There is also the potential for misstratification of individuals in these and similar

data sets. In all studies, the original assignment of individuals to strata is based on a
measure independent of the genetic data, usually morphology in the case of species,
or geographic location in the case of populations. For subspecies, there can be overlap
of morphological characters, as well as geographic overlap of individuals. If individu-
als are taken from the region of sympatry, a priori assignment of individuals for the
purposes of training a classification model can be problematic and can carry with it
an air of circularity (Remsen 2010). In their re-analysis of sage sparrow (Amphispiza
belli) data, Cicero and Johnson (2006) have shown that errors of assignment can
strongly affect estimates of diagnosability and hence inferences of subspecies status.
In our sensitivity test, we saw relatively small changes in diagnosability with error
rates ≤1%, which should be achievable in most studies if attention is paid to sample
provenance and the necessary corroborative data for subspecies assignment can be
obtained.

Overclassification

Clearly, more sites provide more information for classification, thus longer
sequences would be predicted to improve diagnosability. In this era of high-through-
put sequencing, one can expect that data sets composed of the full mitogenome as
well as kilobases of nuclear sequences will soon become the norm (Davey et al. 2011).
Given enough loci, one would expect to be able to distinguish clusters of closely
related individuals or family groups as they are more likely to share unique characters
than randomly selected individuals within a population. If, either as an artifact of
sampling or natural patterns of distribution, individuals have been stratified such that
they are largely composed of family groups, there is a potential that increasing the
amount of data will increase the chance of incorrectly assigning subspecific status,
thus making an overclassification error.
This concern overlooks a key feature of subspecies that distinguishes them from

family groups. Most definitions of subspecies emphasize their geographic distinctive-
ness and diagnosability (Amadon 1949, Wilson and Brown 1953, Patten 2010, Win-
ker 2010). As outlined above, this cannot be considered a sufficient criterion by itself.
However, subspecies are also recognized as entities along an evolutionary continuum
(Haig et al. 2006). As well articulated by Patten (2010), although not all subspecies
become species, all species theoretically had to go through a subspecies stage. In light
of this, the definition of subspecies set forth by Taylor et al. (2017b) requires that
subspecies are both diagnosable and appear to be on separate evolutionarily lineages.
This reflects the expectation that subspecies should demonstrate a degree of diver-
gence greater than expected between populations or related individuals within a pop-
ulation.
This is illustrated in the relationship between diagnosability and divergence seen

in the empirical cetacean data (Fig. 8). While the two metrics are correlated, there is
considerable variability in both, suggesting that each is measuring a different aspect
of the divergence process. In the region of overlap for population and subspecies
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divergence estimates (1.51 9 10–4 – 1.08 9 10–2), populations tend to be less diag-
nosable. Populations plateau at diagnosability less than one, unlike subspecies. This
pattern is consistent with the results from the simulations showing that even after
long divergence times, diagnosability was capped in the presence of dispersal.
In response to concerns of making overclassification errors because of too many

characters, Helbig (2002) advised limiting the number of characters used in diagnos-
ing species to “two or three.” On the contrary, rather than applying an arbitrary limit
to the number of characters used in a diagnosis, we suggest that the goal of a study
should be to use all available characters to produce the best validated model without
overfitting the data. For some taxa, the mitochondrial control region will be a suffi-
cient marker for demonstrating diagnosability. For others, especially those with
extremely large effective population sizes, at least the entire mitogenome will be
required if not other nuclear markers, especially if individual size is relatively small.
Diagnosability should then be assessed in conjunction with evidence of evolutionary
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Figure 8. Relationship of diagnosability to Nei’s net nucleotide divergence (dA, Nei and
Kumar 2000). Colors indicate taxonomic level of comparison: species (blue), subspecies
(green), and populations (red). Vertical lines indicate the binomial 95% CI around diagnos-
ability. Note that x-axis for dA is log10-scaled.
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divergence, as it is the combination of these two metrics that best define the bound-
ary between populations and subspecies.

Effects of Sample Size

As seen in the simulated data, the number of individuals necessary for a given
study will likely be case-specific, as it is a factor of both the effective population size
and the degree of divergence among the strata under consideration. However, as sam-
ple size decreases, uncertainty in the diagnosability estimate increases, which can
affect interpretation, especially if it is near the threshold. For example, if we had a
model that correctly classified 59 of 70 individuals in a stratum, the diagnosability of
that stratum would be 84%. Were the diagnosability threshold for subspecies status
set at 90%, we may not believe the bar had been cleared. Based on a standard bino-
mial distribution, the 95% confidence interval for this estimate is 74%–91%, and
the probability that the true diagnosability is ≥90% is 0.046. Although there is a
small probability that the threshold value is the true value, it might be close enough
to warrant further investigation. However, if we hypothetically double the sample
size and consider 118 correctly classified out of 140 individuals, the 95% CI becomes
77%–89%, and the probability that the true diagnosability is ≥90% decreases to
0.015. With this larger sample size, our certainty that the observed diagnosability
does not meet the threshold increases.
In most genetic analyses, it is the haplotypic diversity that is of prime importance.

This is also true for Random Forests, but in a slightly different manner. Because Ran-
dom Forests operates on the level of the individual nucleotides rather than haplo-
types, substitutions that have arisen within strata (synapomorphies) provide the
strongest signal for the algorithm. Capturing this signal requires a sample size suffi-
ciently large and broad to ensure that the data contain as many of these closely related
haplotypes as possible. This difference in the way Random Forests treats sequences
means that unique and rare haplotypes can contribute useful information to the clas-
sification algorithm in a way in which they cannot in standard frequency-based popu-
lation genetics methods (Martien et al. 2017).
The most influential factor in interpreting the performance of a Random Forests

model is the use of strata of extremely different individual sizes (Berk 2006). This
issue is not unique to Random Forests, but rather affects many classification algo-
rithms by creating an inherently biased classifier in which the larger stratum will
tend to produce better classifications. This occurs for two reasons: (1) the presence of
more individuals in a stratum can either provide more information for the classifica-
tion algorithm to build a good model for the larger stratum, or give the appearance
of lower variability in the smaller stratum; and (2) even in the absence of useful infor-
mation for classification, individuals will tend to be classified to the larger stratum by
chance alone.
The effect of the first issue cannot be quantified ahead of time given that it is influ-

enced by the amount of overlap among strata as well as the distribution of diagnostic
characters within strata. On the other hand, the effect of the second is simply related
to the ratio of the individual sizes. For example, in the case of two strata, one (A) con-
taining 75 individuals, and the other (B) containing 25 individuals, a random classi-
fier will correctly classify 75% of the A’s and 25% of the B’s. But, because there are
more A’s than B’s, the result is an overall percent correctly classified of 62.5% (0.75
9 75 + 0.259 25), larger than the 50% that one might expect based only on the fact
that there were two strata. This deviation from 50% increases as the imbalance in
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individual size increases (e.g., a 95/5 split = 90.5% correct), potentially leading one
to believe that the classifier is performing well, when in fact it is performing no better
than could be expected by chance alone. The apparent improvement in overall perfor-
mance comes at the cost of poorer classification for the smaller class. This imbalance
in the classification rates is another sign of bias and a poorly trained model.

Recommendations

We recommend that estimates of diagnosability report both how well individuals
can be assigned, and how certain one is of those assignments. Because diagnosability
is an individual-based rather than population-based metric (Philips 1982), thresholds
should be marker-independent. Thresholds based on the degree of accuracy one
believes are required can be set a priori. Citing Amadon (1949), a 75% threshold is
most frequently used. We have previously discussed what was intended by this value,
and as an absolute threshold, we feel that it is not sufficiently high to definitively say
that a subspecies is diagnosable. Being able to correctly classify three out of four indi-
viduals is not considerably different from random chance (50%). On the other end of
the spectrum, a diagnosability of 95% has also been suggested (Patten and Unitt
2002, Patten 2010, Remsen 2010), usually in conformation with the traditional crit-
ical a of 0.05 used in frequentist statistics and similar to the 97% threshold actually
described by Amadon (1949). Given the standard sample sizes used in most studies,
we feel that a 95% threshold is actually too high. For example, with 60 individuals,
one would have to have 58 individuals correctly classified to meet this bar. With two
more misclassifications, the estimated diagnosability would be 93%. For a relatively
well-sampled stratum, that means the difference between being diagnosable and not
is four misclassifications. Thus, in our view, a threshold for minimal diagnosability of
subspecies between 80% and 90% seems most appropriate. However, we do not
advocate for any one threshold in this study. To properly do so requires a detailed
examination of multiple standards and guidelines for delimiting subspecies, which is
undertaken by (Taylor et al. 2017a).
Having an adequate number of individuals in a study will always be a critical fac-

tor for the multiple reasons that we have previously discussed. In the absence of fixed
differences, a minimum of 30 individuals per stratum is likely necessary to begin to
have reasonable estimates of diagnosability as each misclassification represents an
approximately 3% decrease in diagnosability. However, even with 30 samples, the
uncertainty around a diagnosability estimate can be quite large, and the only way to
decrease it would be to add more individuals. In some cases, especially for endangered
or otherwise rarely encountered species, collecting more samples may be unlikely to
happen in a reasonable amount of time.
We were unable to find any discussions in the literature concerning how certain

one should be about individual classifications when evaluating diagnosability. How-
ever, although not explicitly stated, these probabilities are implicit in the original
formulation of the 75% rule. As illustrated in Figure 1B, because the two distribu-
tions have the same likelihood at the point where they cross and have equivalent over-
lap (97% of one lies outside of 97% of the other), the classification probability would
be 50% to either distribution for an individual with a value of the diagnostic charac-
ter at this threshold point. As one moves away from this point, the classification
probabilities change proportional to the ratio of the likelihoods. The rate at which
this occurs is dependent on the variance of the two distributions. Because sequence
data are not continuously distributed, the Random Forests classification probabilities,
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as defined by the distribution of tree votes, are not distributed in a predictably para-
metric manner, making comparisons with the 75% rule inappropriate. It is entirely
possible to have a scenario in which all individuals in a stratum are correctly classi-
fied, but they are classified with only a plurality of trees, say 55%–65%, voting for
the correct stratum. One would have less reliability in the classifications from that
model than if the same individuals were being correctly classified in >90% of the
trees.
One should take care to remove classification bias and achieve better parity among

error rates when building the models. The suggested way for Random Forests is to
have the algorithm build trees using strata of equal sizes (Berk 2006), which is the
approach we have taken in building the models in this study. The effects of strata
imbalance can also be addressed by setting the relative costs of the various misclassifi-
cation errors (Berk 2008), but this becomes very difficult with more than two strata.
One should also evaluate the performance of the model by comparing the results to
what would be expected based on a simple random classification of individuals
(PDprior). This will avoid misinterpretations of high diagnosability that are likely
only due to relatively large sample sizes.
In this study, each data set we examined was composed of only two strata. Remsen

(2010) advocates that rules for diagnosability should only apply to pairwise compar-
isons such as these rather than simultaneous multiple comparisons of three or more
strata where possible. Whether this is appropriate does not have a straightforward
answer and may depend on the particular analysis. In a simultaneous multiple com-
parison analysis, the algorithm can better define classification rules for each individual
stratum in the presence of all of the others. This use of all of the data at once puts
diagnosability estimates of all putative strata on the same level. Additionally, mis-
classifications in these models can be used to help identify strata that do not represent
valid taxonomic units, or strata that have not been adequately sampled and perhaps
should not be included.
However, there are potential difficulties in interpreting the results of multiple

pairwise comparisons. For example, if strata A and B are found to be reciprocally
diagnosable as are strata B and C, but strata A and C are not, how does one determine
the taxonomic status of the three? That is, features that distinguish two strata might
not be as strongly diagnostic in the presence of a third stratum. Some comparisons in
a multiple-strata analysis may not be necessary as in the case where strata are arranged
in a stepping-stone pattern. If contact among strata at the ends is implausible, the
degree of diagnosability of these seemingly allopatric units may not be important if
the question is one of subspecific delimitation. The presence of these unlikely misas-
signments may decrease diagnosability estimates in strata of interest.

Future Directions

The benefit of a tool like Random Forests extends past its utility for estimating
diagnosability for the taxonomic purpose of defining subspecies. The same classifica-
tion engine developed for the delimitation of taxa can be used in forensic settings for
the diagnosis of unknown specimens. Random Forests has been shown to perform
well and is comparable to other methods for genetic barcoding (Austerlitz et al.
2009). However, unlike many other algorithms such as tree-building or those based
on genetic distances, Random Forests also provides detailed estimates of classification
uncertainty, and the ability to identify and rank diagnostic sites. Assessments of diag-
nosability need not be restricted to Random Forests (Bazinet and Cummings 2012).
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Other algorithms such as Support Vector Machines are available and should be
explored (Austerlitz et al. 2009, Seo 2010, Bazinet and Cummings 2012).
Although mtDNA has proven to be a very good marker for estimating diagnos-

ability in this study, given the rapidly increasing role that genomic data are playing
in population genetic and taxonomic studies, we fully expect it to be supplemented
by large numbers of nuclear loci. The use of Random Forest for estimating diagnos-
ability is not limited to mtDNA and should be readily transferrable to nucleotide
sequences from any locus. Single nucleotide polymorphisms (SNP) can also be used
by coding genotypes at each locus as three-state characters (two homozygotes and one
heterozygote). Because it is becoming common to generate several thousand SNP loci
for a study, they are rapidly becoming a popular source of diagnostic markers both
for taxonomic studies as well as management of units of conservation concern (Kali-
nowski et al. 2011, Funk et al. 2012, Sousa and Hey 2013, Cronin et al. 2015).
Finally, because Random Forests is not based on an underlying evolutionary or

population genetics model, loci that are neutrally evolving as well as those under
selection can both be used side-by-side in the same analysis, as suggested by Funk
et al. (2012). An integral feature of Random Forests is the ability to identify and rank
predictor variables that contribute the most diagnostic information to the classifica-
tion model. This is done by permuting the values in the predictor variables and
observing the decrease in classification accuracy. Predictors that result in a large
decrease in classification accuracy when permuted are considered to be more “impor-
tant” to the classifier (Liaw and Wiener 2002). With whole genome data sets, these
importance measures should prove to be useful tools for identifying loci that are can-
didates for understanding local adaptation and drivers of the speciation process.
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